Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Ling Meng, Yuan-Ying Qi, Ren-Min Liu,* Ai-Ling Sun and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail: renminliu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.145$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5,12-Dihydroxy-2,6,7,13-tetramethoxyflavone

The approximately planar title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{8}$, containing a benzopyranone system, a benzene ring and four methoxy groups, is a natural flavone extracted from the herb Vitex trifolia L. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and possible $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions result in the formation of a two-dimensional network.

Comment

The title compound, (I), is a natural flavone, which possesses analgesic and anti-inflammatory properties (Okuyama et al., 1998). In addition, it inhibits the proliferation of lymphocytes and the growth of some cancer cells (You et al., 1998; Kobayakawa et al., 2004). In order to better correlate these biological effects with the detailed conformation of the molecule and its propensity to form specific intermolecular interactions, we report its structure here.

(I)

Compound (I) is built up from a benzopyranone system, a phenyl ring and four methoxy groups (Fig. 1). The atoms of the benzopyranone system, composed of rings $A(\mathrm{C} 4-\mathrm{C} 9)$ and $C(\mathrm{O} 1 / \mathrm{C} 9 / \mathrm{C} 1-\mathrm{C} 4)$, are almost coplanar, the dihedral angle between the rings being $2.7(1)^{\circ}$. The benzene ring $B(\mathrm{C} 10-$ $\mathrm{C} 15)$ is rotated by $8.3(1)^{\circ}$ with respect to the benzopyranone framework. In the related molecule dimethylgenistein (Zhang et al., 2005) the equivalent B ring is rotated by $56.28(3)^{\circ}$, perhaps as a result of different neighboring hydrogen bonds.

The molecules of (I) are linked into an infinite twodimensional network formed by a combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds arising from terminal methyl groups (Fig. 2 and Table 1). There are also two intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds (Fig. 1 and Table 1.

Experimental

Compound (I) (16 mg) was isolated from the Chinese medical herb Vitex trifolia L. (500 mg) by high-speed counter-current chromatography with light petroleum-ethyl acetate-methanol-water (5:5:3:7,

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are indicated by dashed lines.

Figure 2
Part of the two-dimensional network in (I), with the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contacts shown as dashed lines.
$v / v)$ as the two-phase solvent system. The product was recrystallized from dichloromethane at room temperature (yield $12 \mathrm{mg}, 98.5 \%$; m.p. $463 \mathrm{~K})$. Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{8}$: C 60.96, H 4.76\%; found: C 60.94, H 4.75\%. ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 400 MHz, p.p.m.): $\delta 12.59(1 \mathrm{H}$, $s, 5-\mathrm{OH}), 9.46(1 \mathrm{H}, s, 12-\mathrm{OH}), 6.85(1 \mathrm{H}, s, 8-\mathrm{H}), 7.57(1 \mathrm{H}, d, 11-\mathrm{H})$, $7.08(1 \mathrm{H}, d, 14-\mathrm{H}), 7.56(1 \mathrm{H}, d, 15-\mathrm{H}), 3.71,3.78,3.85,3.90(12 \mathrm{H}$, OMe $\times 4$). ${ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz, p.p.m.): $\delta 157.23$ (C-1), 143.42 (C-2), 183.72 (C-3), 111.03 (C-4), 157.11 (C-5), 137.02 (C-6), 164.13 (C-7), 96.76 (C-8), 161.07 (C-9), 125.86 (C-10), 120.49 (C-11),
151.80 (C-12), 155.76 (C-13), 117.26 (C-14), 127.64 (C-15), 65.49 (C16), 65.16 (C-17), 61.92 (C-18), 61.08 (C-19).

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{8}$
$Z=8$
$M_{r}=374.33$
Monoclinic, C2/c
$a=15.528$ (4) A
$b=12.446$ (3) \AA
$c=17.672$ (4) \AA
$\beta=92.565$ (4)
$V=3411.7(13) \AA^{3}$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.973, T_{\text {max }}=0.979$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0629 P)^{2}\right. \\
& +1.0805 P \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.145$
$S=1.03$
3004 reflections
244 parameters
H -atom parameters constrained
$D_{x}=1.458 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation $\mu=0.12 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.24 \times 0.21 \times 0.19 \mathrm{~mm}$

8808 measured reflections 3004 independent reflections 1569 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$ $\theta_{\text {max }}=25.0^{\circ}$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7 $\cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.16	$2.942(3)$	161
C17-H17A \cdots O6 $^{\mathrm{ii}}$	0.96	2.53	$3.482(4)$	171
C19-H19A \cdots O2 $^{\mathrm{i}}$	0.96	2.51	$3.334(4)$	144
O4-H4 \cdots O2	0.82	1.86	$2.591(3)$	148
O7-H7 \cdots O8	0.82	2.24	$2.681(3)$	115

Symmetry codes: (i) $x, y+1, z$; (ii) $-x,-y,-z$.

H atoms were positioned geometrically $(\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-$ $\mathrm{H}=0.93-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}$ (methyl C,O).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

References

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Kobayakawa, J., Sato-Nishimori, F., Moriyasu, M. \& Matsukawa, Y. (2004). Cancer Lett. 208, 59-64.
Okuyama, E., Fujimori, S., Yamazaki, M. \& Deyama, T. (1998). Pharm. Bull. 46, 655-662.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
You, K. M., Son, K. H., Chang, H. W., Kang, S. S. \& Kim, H. P. (1998). Planta Med. 64, 546-550.
Zhang, Z.-T., Wang, X.-B., Liu, Q.-G., Zheng, J.-B. \& Yu, K.-B. (2005). Acta Cryst. C61, o29-o31.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

